Journal of Organometallic Chemistry, 122 (1976) 53-61 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

SUBSTITUTION PRODUCTS OF $[V(CO)_6]^-$ AND $[\eta^5-CpV(CO)_4]$ WITH DI-AND TETRA-TERTIARY PHOSPHINES

DIETER REHDER *, LUTZ DAHLENBURG and IRENE MÜLLER

Institut für Anorganische und Angewandle Chemie der Universität, 6 Martin-Luther-King-Platz, D 2000 Hamburg-13 (Germany)

(Received May 26th, 1976)

Summary

Complexes of the type cis-[R₄N][V(CO)₄Ph₂P(CH₂)_nPPh₂] (R = Et, n = 2, 3, 4; R = n-Bu, n = 1, 3) have been prepared by photosubstitution of [R₄N][V(CO)₆]. UV irradiation of $[\eta^{5}$ -CpV(CO)₄] in the presence of Ph₂P(CH₂)_nPPh₂ results in the formation of cis-[η^{5} -CpV(CO)₂Ph₂P(CH₂)_nPPh₂] (n = 1, 2, 4) or, in the case of n = 3, of a polymeric compound cis-[η^{5} -CpV(CO)₂Ph₂P(CH₂)₃PPh₂]_m. Evidence is presented for a relationship between ⁵¹V chemical shifts and the ring size of the chelated structures.

Photosubstitution of $[Et_4N][V(CO)_6]$ with the potentially tetradentate $Ph_2P(CH_2)_2PPh(CH_2)_2PPh(CH_2)_2PPh_2$ (tetraphos) yields an isomeric mixture of a mono-metallic triligate complex *mer*- $[Et_4N][V(CO)_3$ tetraphos] and the probably polymeric *cis*- $[Et_4N]_{2n}[\{V(CO)_4\}_2$ tetraphos]_n. The structures are discussed on the basis of IR and ³¹P NMR spectra.

Introduction

Phosphine and arsine substituted hexacarbonyl vanadates(-I) are currently of interest because of their high reactivity compared to that of the $[V(CO)_6]^$ anion itself, which is remarkably inert when attached to large cations such as $[Et_4N]^+$, $[Bu_4N]^+$ and $[PPh_4]^+$. Substituted phosphines and related Group V donors are easily introduced (usually via photoreaction) into $[V(CO)_6]^-$ and $[\eta^5-CpV(CO)_4]$, yielding complexes of the composition $[V(CO)_n L_{6-n}]^-$ (n = 4,5) [1-6,16] and $[\eta^5-CpV(CO)_m L_{4-m}]$ (m = 2, 3) [7-16], respectively. Ellis and co-workers describe several $[V(CO)_4 LL]^-$ complexes, where LL = dppe,

^{*} To whom correspondence should be addressed.

dmpe and diars * [2,6] while Behrens and Brandl [9] prepared chelate complexes of composition $[\eta^5$ -CpV(CO)₂dppe] and $[\{\eta^5$ -CpV(CO)₃\}\mu-triphos $\{\eta^5$ Cp-V(CO)₂] *.

No systematic investigation of carbonyl vanadium compounds containing dior oligotertiary phosphines has previously been described. Extending our earlier work on complexes of the type $[V(CO)_5PR_3]^-$ [5] and $[\eta^5-CpV(CO)_3PR_3]$ [15], we now describe the preparation and properties of a number of compounds containing the ditertiary phosphines dppm, dppe, dppp, and dppb, as well as the potentially tetradentate tetraphos *.

In general, the chelate complexes turn out to be thermally much stabler and substantially less air-sensitive than the corresponding complexes containing two monotertiary phosphines [16], and this may well stimulate further investigations in this field.

Experimental

General method and materials

All operations were carried out under nitrogen and in anhydrous solvents. Photolytic substitution reactions with $[V(CO)_6]^-$ were conducted at room temperature in commercially available vessels (Mangels, Bonn) of about 120 ml capacity, fitted with a cooling system and a quartz immersion well. The radiation source was a high pressure mercury lamp (Hanau, radiation flux 47 W). During photolysis, the solution was circulated magnetically. A weak N₂ stream was conducted through the reaction vessel in order to remove photolytically-released CO.

Substitution reactions with $[\eta^5$ -CpV(CO)₄] were carried out in cylindrical quartz vessels of 20 to 100 ml capacity, fitted with gas inlet tube, reflux condenser, and gas outlet. Irradiation was carried out by placing the mercury lamp close to the reaction vessel. During the reaction, the system was cooled with pressurized air so as to maintain the temperature below 60–70°C. A weak N₂ stream was bubbled through the solution to remove CO and to agitate the mixture.

 $[Na(diglyme)_2][V(CO)_6], [\eta^5-CpV(CO)_4]$ and phosphines were taken from commercial sources (Strem, Alfa, Maybridge) and used without further purification, except for $[\eta^5-CpV(CO)_4]$ which was resublimed. $[Et_4N][V(CO)_6]$ and $[n-Bu_4N][V(CO)_6]$ were prepared as follows: 20.5 g of $[Na(diglyme)_2][V(CO)_6]$ (0.04 mol) were dissolved in 60 ml of CH₃OH and the solution was filtered and treated with 9.0 g $[Et_4N]Br$ or 13.0 g $[n-Bu_4N]Br$ (0.043 mol) in 40 ml of CH₃OH. To this mixture, 100 ml of O₂-free H₂O was added. After stirring for half an hour, the yellow precipitate was filtered off, washed with four 50 ml portions of CH₃OH/H₂O 1 : 1, and dried under high vacuum.

IR spectra were recorded on a Perkin–Elmer 325 spectrophotometer, using approximately 0.02 *M* THF or CH₃CN solutions or Nujol mulls. ${}^{31}P{}^{1}H$ NMR

^{*} dmpe = bis(dimethylphosphino)ethane, dppm = bis(diphenylphosphino)methane, dppe = bis-(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane, dppb = bis(diphenylphosphino)butane, triphos = 1,1,1-tris(diphenylphosphinomethylene)ethane, tetraphos = 1,1,4,7,10,10hexaphenyl-1,4,7,10-tetraphospha-decane, diars = o-phenylene-bis(dimethylarsine).

spectra were obtained with a Bruker WH 90 NMR spectrometer. ⁵¹V NMR spectra were recorded at 11.200 MHz and about 1 T using a Varian wideline spectrometer DP 60. The sample solutions (0.2–0.3 *M*) were sealed under N₂ in 15 mm diameter vials. Chemical shifts τ_V were measured relative to an external VOCl₃ standard, "absolute" values were calculated according to $\tau_{abs} = (0.566 + \tau_V) - 1.950$ (%), taking [V(CO)₆]⁻ as a reference ($\tau_V = -0.566$) [4,15]. Peak-topeak line widths and ¹J(⁵¹V–³¹P) coupling constants were measured at a modulation amplitude of 4.1–8.2 μ T. The relative standard deviation of the τ_V -values is 0.5–2%, depending on the width of the resonance line.

General procedure for the preparation of $[R_4N][V(CO)_4Ph_2P(CH_2)_nPPh_2]$ [I, R = n-Bu, n = 1; II, R = Et, n = 2; III, R = Et, n = 3; IV, R = n-Bu, n = 3; V, R = Et, n = 4]

A solution of 2.00 mmol of $[R_4N][V(CO)_6]$ and 2.20 mmol of $Ph_2P(CH_2)_nPPh_2$ in 100–120 ml of THF was irradiated for four hours, then evaporated to 15 ml and allowed to stand overnight. II, IV and V separated as orange-yellow crystals, which were filtered off and washed three times with 5 ml portions of benzene/heptane/THF 4 : 2 : 1 and once with 5 ml of heptane. In the case of I and III, the concentrated solutions were treated with 5 ml of benzene, followed by dropwise addition of 20 ml heptane. The suspension was stirred for at least three hours. (Sometimes, the precipitate was sticky and in this case 30 ml of heptane/ cyclohexane 1 : 1 was added with stirring, the supernatant mixture discarded, and the residue redissolved in 5 ml THF and treated as described.) The precipitate was filtered off, washed with two 5 ml portions of heptane and recrystallized from a THF/benzene (1 : 2) solution with heptane.

This procedure also yielded additional quantities of II, IV and V. Yields, properties and analytical data are listed in Table 1.

Dicarbonyl- η^{s} -cyclopentadienyl-1,1-bis(diphenylphosphino)methane-vanadium-(+I) [η^{s} -CpV(CO)₂dppm] (VI)_

A solution of 510 mg of $[\eta^{5}$ -CpV(CO)₄] (2.20 mmol) and 880 mg dppm

TABLE 1

ANALYTICAL DATA AND PROPERTIES OF [R ₄ N][V(CO) ₄ Ph ₂ P(CH ₂) _n PPh ₂]								
Complex	Colour	Analysi	s found (calcd.) (%)				
		с	н	N	Р	v	Yield (%)	
[Bu ₄ N][V(CO) ₄ dppm] (I) C ₄₅ H ₅₈ NO ₄ P ₂ V	red to pur- plish-brown	68.2 68.77	7.3 7.40	1.9 1.77	7.3 7.83	6.8 6.45	65	
[Et ₄ N][V(CO) ₄ dppe] (II) C ₃₈ H ₄₄ NO ₄ P ₂ V	yellow-orange	65.9 65.99	6.6 6.41	2.0 2.03	8.7 8.95	7.5 7.37	72	
[Et4N][V(CO)4dppp] (III) C ₃₉ H ₄₆ NO4P ₂ V	yellow-orange	66.7 66.38	6.8 6.57	2.2 1.99	8.4 8.77	7.1 7.22	68	
[Bu4N][V(CO)4dppp] (IV) C47H ₆₂ NO4P ₂ V	orange	68.8 68.77	7.7 7.98	1.7 1.71	7.7 7.54	6.0 6.21	80	
[Et ₄ N][V(CO)4dppb] (V) C ₄₀ H ₄₈ NO4P ₂ V	orange	66.8 66.76	6.7 6.72	1.9 1.95	8.2 8.60	6.9 7.08	83	

(2.30 mmol) in 60 ml THF was irradiated for 2 hours. The dark red-brown solution was evaporated to dryness, the residue redissolved in 15 ml benzene, and VI precipitated by addition of 20 ml of heptane. After stirring for 15 min, the precipitate was filtered off, washed three times with 10 ml portions of heptane and dried, yielding wine-red VI, which is moderately air-sensitive. Yield: 940 mg (77%). (Found: C, 69.2; H, 4.8; P, 10.8; V, 9.2. $C_{32}H_{27}O_2P_2V$ calcd.: C, 69.02; H, 4.89; P, 11.12; V, 9.16%).

Dicarbonyl- η^5 -cyclopentadienyl-1,2-bis(diphenylphosphino)ethane-vanadium(+I) [η^5 -CpV(CO)₂dppe] (VII)

The complex was prepared as described above for VI. Yield: 1210 mg (81%). (Found: C, 69.6; H, 5.2; P, 11.1; V, 8.9. $C_{33}H_{29}O_2P_2V$ calcd.: C, 69.49; H, 5.12; P, 10.85; V, 8.93%.)

Dicarbonyl- η^{5} -cyclopentadienyl-1,4-bis(diphenylphosphino)butane-vanadium(+I) [η^{5} -CpV(CO)₂dppb] (VIII)

A solution of 600 mg $[\eta^5$ -CpV(CO)₄] (2.60 mmol) and 1120 mg dppb (2.60 mmol) in 60 ml THF was irradiated for one and a half hours. The dark brown solution was evaporated to 5 ml and allowed to stand for 1 week. Dark-red crystals with a purplish iridescent luster separated. The supernatant solution was decanted, the crystals rinsed three times with 3 ml portions of THF and dried under vacuum. The mother liquor was treated with 20 ml of heptane to give a sticky dark product, which redissolved on addition of 5 ml benzene. The solution was evaporated to dryness and the residue redissolved in 10 ml of benzene. Pure VIII was precipitated by addition of 75 ml of heptane. After stirring for 1 hour the purplish-red powder was filtered off, washed once with 5 ml of heptane and dried under vacuum. Total yield: 710 mg (45%). VIII is moderately air-sensitive. (Found: C, 70.3; H, 5.6; P, 10.5; V, 8.3. C₃₅H₃₃O₂P₂V calcd.: C, 70.24; H, 5.56; P, 10.34; V, 8.51%.)

Dicarbonyl- η^{5} -cyclopentadienyl-1,3-bis(diphenylphosphino)propane-vanadium-(+I) $[\eta^{5}$ -CpV(CO)₂dppp]_n (IX)

A solution of 460 mg $[\eta^5$ -CpV(CO)₄] (2.00 mmol) and 865 mg dppp (2.10 mmol) in 60 ml THF was irradiated for 1 hour to give an orange-red precipitate of IX. The product was filtered off, washed twice with two 6 ml portions of THF and with two 8 ml portions of benzene and dried under high vacuum. (Found: C, 70.3; H, 5.5; P, 10.5; V, 8.5. C₃₄H₃₁O₂P₂V calcd.: C, 69.87; H, 5.35; P, 10.60; V, 8.72%.) Yield: 980 mg (83%). It is insoluble in heptane, benzene, ether, methylene chloride, acetonitrile, acetone, pyridine and methanol and sparingly soluble in THF. The complex is air-stable for several hours.

mer-Tetraethylammonium tricarbonyl-(1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane)-vanadate(-I) [Et_4N][$V(CO)_3$ tetraphos] (X) and cis-Bis-(tetraethylammonium) μ -1,1,4,7,10-hexaphenyl-1,4,7,10-tetraphosphadecane-bis[tetracarbonyl-vanadate(-I)] [Et_4N]_{2p}[{ $V(CO)_4$ }₂tetraphos]_n (XI)

A solution of 700 mg $[Et_4N][V(CO)_6]$ (2.00 mmol) and 1.55 g tetraphos (2.30 mmol) in 120 ml THF was irradiated for 24 hours, during which time, the solution became deep red indicating the formation of X. Simultaneously

a yellow solid (XI) precipitated, which was filtered off, washed with three 5 ml portions of THF and dried under high vacuum. Although the product was practically pure, small amounts (approximately 50 mg) were reprecipitated from CH₃CN. (Found: C, 63.5; H, 6.6; N, 2.2; P, 9.4; V, 8.0. $C_{66}H_{82}N_2O_8P_4V_2$ calcd.: C, 63.06; H, 6.58; N, 2.24; P, 9.84; V, 8.10%.) Yield: 260 mg (21%). The compound is moderately air-sensitive.

In the case of X, the reaction mixture was filtered, evaporated to about 10 ml and treated with 20 ml of toluene. Then 100 ml of cyclohexane/heptane 1 : 1 was added with vigorous stirring. After one hour's stirring, the precipitate was filtered off, washed twice with 5 ml portions of cyclohexane and redissolved in 5 ml of THF. After addition of 15 ml of toluene the solution was filtered, and X was reprecipitated by addition of 75 ml of cyclohexane/heptane, 2 : 1. The dried product was a dark red, extremely air-sensitive, granular powder. (Found: C, 68.4; H, 6.7; N, 1.4; P, 12.9; V, 5.6. $C_{53}H_{62}NO_3P_4V$ calcd.: C, 68.02; H, 6.68; N, 1.50; P, 13.24; V, 5.44%.) Yield: 680 mg (36%).

Results and discussion

Preparation and spectral properties of $cis_{R_4N}[V(CO)_4Ph_2P(CH_2)_nPPh_2]$ (I)--(V)

These compounds are readily formed in THF solution by photo-induced introduction of the bis-phosphine into the $[V(CO)_6]^-$ anion. Monitoring the reaction by IR reveals a two-step CO substitution *:

 $[V(CO)_6]^- + \hat{LL} \rightarrow [V(CO)_5\hat{LL}^*]^- + CO \text{ (fast)}$

 $[V(CO)_{s}\hat{LL}^{*}]^{-} \rightarrow [V(CO)_{4}\hat{LL}]^{-} + CO \text{ (slow)}$

Although there is substantial IR spectroscopic evidence for the existence of $[V(CO)_{s}\hat{L}L^{*}]^{-}$ anions (Table 2), we could not isolate the pure mono-ligate species. Conversion into the biligate species is complete after about four hours of irradiation.

From the concentrated solutions, the complexes II, IV and V separate as crystalline, orange powders. Alternatively the orange-yellow compounds II—V and the purple I can be precipitated with benzene/heptane. IR and ⁵¹V NMR data are listed in Table 2. The IR spectra of the disubstituted products are consistent with C_{2v} symmetry [$\Gamma(CO) = 2A_1 + B_1 + B_2$], i.e. substitution occurs exclusively in *cis*-positions.

Photolytic substitution of $[\eta^5 - CpV(CO)_4]$

The photochemical reaction between $[\eta^{5}\text{-}CpV(CO)_{4}]$ and $Ph_{2}P(CH_{2})_{n}PPh_{2}$ in THF solution at elevated temperatures leads exclusively to the *cis*-disubstituted complexes $[\eta^{5}\text{-}CpV(CO)_{2}Ph_{2}P(CH_{2})_{n}PPh_{2}]$ [VI, n = 1; VII, n = 2; VIII, n = 4.]. For n = 3, an insoluble, and thus probably polymeric product $[\eta^{5}\text{-}CpV(CO)_{2}\text{-}dppp]_{m}$ (IX) with bridging dppp is formed.

VI, VII and VIII can be precipitated by addition of benzene/heptane mixtures to the concentrated THF solution. The IR spectra indicate that the photo-

^{*} An asterisk denotes non-ligated P of the bis-phosphine LL.

TABLE 2									
IR AND NMR DATA FOR CARBONYLCYCLOPENT	BIS(DIPHEN ADIENYLVA	VYLPIIOSPIII NADIUM(+1)	NO)ALKANE COMPOUNE	SUBSTITUT S	ED CARBONYLVA	NADATES(UNV (†		
	ν(C=O) (em ⁻¹)				Phase	7 V ^G (%)	−1 _{abs} ^b (%)	ΔH (μT)	رمH) (۲۲) ر
[V(CO)sLîL*]-c LîL* = doom	1962	1857	1821	•	d Hd,				
LL* = dppc	1964	1858	1820		THF/CH ₃ CN	0,183	1,201	30	190 d
$I_{n}^{1}L^{*} = dppp$	1961	1858	1821		TILF			2	9 1
[V(C0)4ĹL] [–]									
LL = dppm I	1001	1800	1780	1743	THF	0.159	1,225	39	I
$LL = dppe II^{f}$	1903	1 799	1780	1747	THF/CH ₃ CN	0.179	1,205	64	230 °
$LL = dppe II^{f}$	1898	1783	1766	1723	loluN				
LL = dppp III, IV	1888	1782	1758	1740	CH 3CN	0.171	1.213	49	190 ^e
LL = dppb V	1897	1795	1770	1746	THF	0.171	1.213	62	ł
[n ⁵ -cpV(CO) ₃ LL*] °									
LL [*] = dppb	1949	1861	1640		A H.L.				
[₁ ⁵ .CpV(CO) ₂ [JL]					- 				
ĹL = dppm VI	1871	1808			THF	0.087	1.297	35	I
$LL = dppe VII^{H}$	1870	1799			THF	0.111	1.273	51	ł
lîL = dppb VIII	1860	1774			THF	0.136	1.248	38	1
[n ⁵ -CpV(CO) ₂ dppp] _n ^h	1830	(1818)	1758	(1728)	Nujol				

^a Up-field an external VOCl₃ standard. ^b "Absolute" chemical shift; $\tau_{abs} = (\tau_V + 0.566) - 1.950$ rafs, 4, 15, ^c * denotes an unligated P atom of the bisphosphine D. ^d Doublet. ^c Triplet. ^f The IR data are in good accordance with those reported in ref. 2. ^g 1865 and 1787 cm⁻¹ in CH₂Cl₂ [9], ^h Bands in

brackets probably originate from trebly substituted structural units.

٦ ط

58

induced substitution proceeds in two steps via the monoligate species, which again were not isolated. The CO stretching frequencies for the monoligate and biligate complexes are shown in Table 2. For IX, two weak "extra" bands (1818 and 1728 cm⁻¹) are observed, suggesting participation of trebly-substituted species in the polymeric structure.

⁵¹V NMR spectra of $[V(CO)_4 \hat{LL}]^-$ and $[\eta^5 - CpV(CO)_2 \hat{LL}]$

The ⁵¹V NMR data are summarized in Table 2. Except for I, ⁵¹V chemical shifts for the $[V(CO)_4 LL]^-$ series are of the same order of magnitude as those for $[V(CO)_4(PR_3)_2]^-$ ions [16]. The remarkable down-field shift in the case $[V(CO)_4 dppm]^-$ may be due to enhanced ring strains within the <u>V-P-C-P</u> system, providing less shielding for the vanadium nucleus. In turn, the phosphorus atoms would be more shielded than in the corresponding dppe and dppp complexes, an effect which has been observed by Appleton et al. [17] in Pt-dppm complexes.

Appleton [17] and Braterman et al. [18] showed that $Pt^{-31}P$ coupling is weaker in Pt-dppm complexes than in other bis-phosphine platinum compounds, and this again they attributed to strains within the ring system and distortion of angles. We suggest that a similar effect is responsible for the fact that no coupling was observed in [V(CO)₄dppm]⁻, whereas II, III and IV show the expected triplets with coupling constants of about 200 Hz (Table 2).

It is noteworthy that the chemical shift values for $[\eta^5 - CpV(CO)_2\dot{L}L]$ complexes move down-field with decreasing ringsize. Simultaneously, the $\nu(CO)$ stretching modes increase, indicating less electron density to be delocalized towards the CO-ligands. We interpret these effects in terms of hindered P--V σ -overlap (i.e. hindered P \rightarrow V σ -donation) due to distortions of the P--V--P angles and strains within the small ring systems.

The reaction between $[V(CO)_6]^-$ and tetraphos

A considerable number of transition metal-tetraphos complexes have recently been described, and their structures and spectral properties discussed [19-24].

From the photochemically induced reaction between $[Et_4N][V(CO)_6]$ and tetraphos in THF solution, two well defined compounds were isolated: a monometallic triligate complex *mer*- $[V(CO)_3$ tetraphos]⁻ (X), and a phosphinebridged product of empirical composition *cis*- $[Et_4N]_2[\{V(CO)_4\}_2$ tetraphos] (XI), which is probably polymeric.

The initial reaction is the elimination of one CO and its replacement by a tetraphos-P, as shown by IR spectroscopy. Absorption bands characteristic of biligate *cis*-[V(CO)₄tetraphos]⁻ (Table 3) appear after about ten minutes. At this stage XI begins to precipitate. CO-frequencies associated with the monoligate and biligate forms disappear after about three and eight hours, respectively. However, in order to obtain analytically and spectroscopically pure samples of X, irradiation has to be maintained for at least 24 hours.

From the concentrated, red solution, X is precipitated with a toluene/cyclohexane/heptane mixture. After reprecipitation it forms an exceedingly air-sensitive (sometimes pyrophoric) dark-red powder which is very soluble in THF, acetone and toluene. IR spectra (cf. Table 3) are in accord with a meridional position of the three ligated P-atoms [$\Gamma(CO) = 2A_1 + B_1$, assuming, in a first TABLE 3

	Phase THF	u(C=O) (cm ⁻¹)			4
[V(CO),tetraphos]		1961	1856	1818	
cis -[V(CO)_tetraphos]	THF	1896	1792	1770	1733
$mer{V(CO)}tetraphos]^(X)$	THF	1898	1810	1715	
mer-[EtaN][V(CO)atetraphos] (X)	Nujol	1895	1803	1705	
$cis-[Et_4N]_{2n}[\{V(CO)_4\}_{2}tetraphos]_n(XI)]$	Nujol	1888	1809	1785	1745

IR DATA FOR THE REACTION PRODUCTS BETWEEN [Et_N][V(CO)_] AND tetrapho

approximation, C_{2v} symmetry]. The "normal" ⁵¹V chemical shift ($\tau_V = 0.181\%$ upfield a VOCl₃ standard; $\Delta H = 58 \ \mu T$) indicates that there are no substantial strains in the bicyclic structure. The high sensitivity towards air is to be expected for vanadium(-I) carrying only three CO groups as π -acceptors.

The triligate function of the tetraphos is supported by ³¹P NMR measurements (¹H-decoupled). Our observations on phosphine-substituted carbonyl vanadates show that only broad and weak ³¹P signals, if any, are to be expected for P-atoms directly bond to vanadium. There are, however, two multiply split, sharp ³¹P NMR signals for X with an approximate intensity ratio of 1 : 4. In the light of NMR data for the uncoordinate tetraphos [25], the spectrum may be

Fig. 1. Proposed structures for mer-[V(CO)3tetraphos]⁻ [Xa and Xb] and [Et₄N]_{2n}[{V(CO)₄} 2tetraphos]_n [XI]; P^{*} = unligated P.

interpreted as follows: The first, weak signal, a triplet with the centre line at 15.9 ppm and a coupling constant of 25 Hz, must be associated with an unligated -PPh- group coupling with the two adjacent P atoms. The second signal of higher intensity comprises a doublet at 12.0 ppm (coupling constant 29 Hz), which is allocated to a terminal, unligated $-PPh_2$ group. Three other signals remain unassigned. We propose the structures Xa and Xb (Fig. 1), with the isomer Xb constituting less than 25% of the isomeric mixture.

XI is obtained as a yellow to yellow-orange powder, which is insoluble in all common solvents, but sparingly soluble in acetonitrile, from which it may be reprecipitated. Elementary analysis indicates a V : P ratio of 1 : 2. IR data (Table 3) show clearly that the molecule contains cis-[V(CO)₄ $\hat{L}L$]⁻ units. The ³¹P NMR spectrum in CD₃CN shows two rather weak but definite signals centred at 13.5 ppm and 17.3 ppm, respectively, which we assign to unligated —PPh₂ and —PPh— groups. A polymeric structure is therefore proposed, with tetraphos acting as a triligate bridging ligand (Fig. 1).

Acknowledgement

We are grateful to the Institutsrat of the Institut für Anorganische und Angewandte Chemie, University of Hamburg, for financial support of this work.

References

- 1 R.P.M. Werner, Z. Naturforsch., 16b (1961) 477.
- 2 A. Davison and J.E. Ellis, J. Organometal. Chem., 31 (1971) 239.
- 3 A. Davison and J.E. Ellis, J. Organometal. Chem., 36 (1972) 131.
- 4 D. Rehder, J. Organometal. Chem., 37 (1972) 303.
- 5 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333.
- 6 J.E. Ellis and R. Faltynek, J. Organometal. Chem., 93 (1975) 205.
- 7 R.B. King, Inorg. Chem., 2 (1963) 936.
- 8 R. Tsumara and N. Hagihara, Bull. Chem. Soc. Japan, 38 (1965) 1901.
- 9 H. Behrens and H. Brandl, Z. Naturforsch., 22 (1967) 1353.
- 10 W. Strohmeier and F.-J. Müller, Chem. Ber., 100 (1967) 2812.
- 11 E.O. Fischer, E. Louis and R.J.J. Schneider, Angew. Chem., 80 (1968) 122.
- 12 E.O. Fischer, E. Louis, W. Bathelt and J. Müller, Chem. Ber., 102 (1969) 2547.
- 13 G.C. Faber and R.J. Angelici, Inorg. Chem., 9 (1970) 1586.
- 14 E.O. Fischer and R.J. Schneider, Chem. Ber., 103 (1970) 3684.
- 15 D. Rehder, W.L. Dorn and J. Schmidt, Transition Met. Chem., 1 (1976) 74.
- 16 D. Rehder, Comprehensive study of the mono-tertiary di-substituted complexes, in preparation.
- 17 T.G. Appleton, M.A. Bennet and J.B. Tomkins, J. Chem. Soc. Dalton Trans., (1976) 439.
- 18 P.S. Braterman, R.J. Cross, L. Manojlović-Muir, K.W. Muir and G.B. Young, J. Organometal. Chem., 84 (1975) C 40.
- 19 R.B. King, R.N. Kapoor, M.S. Saran and P.N. Kapoor, Inorg. Chem., 10 (1971) 1851, ibid., 1861.
- 20 R.B. King and P.N. Kapoor, J. Amer. Chem. Soc., 93 (1971) 4158.
- 21 R.B. King and P.N. Kapoor, Inorg. Chem., 11 (1972) 1524.
- 22 I.S. Butler and N.J. Coville, J. Organometal. Chem., 80 (1974) 235.
- 23 R.B. King and J.C. Cloyd Jr., Inorg. Chem., 14 (1975) 1550.
- 24 R.B. King, J.C. Cloyd Jr. and R.H. Reinmann, Inorg. Chem., 15 (1976) 449.
- 25 D.L. DuBois, W.H. Myers and D.W. Meek, J. Chem. Soc. Dalton Trans., (1975) 1011.